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Traditional data assimilation techniques attempt to acquire an accurate idea of the instantaneous
“state” of a physical system via an interchange of observational and model probability distributions.
A natural question that arises is also possible to adopt similar techniques to get a better idea of the

mean or seasonal state of a system.

I. ASSIMILATING WITH CONSTANT
OBSERVATIONS

A. Experimental Setup

The data assimiation routine is initialized using the
POP ocean model on a 1 degree resolution ocean grid.
The data assimilation is done with DART using adaptive
inflation. The atmospheric forcing chosen was one of the
following

NYF normal year forcing from the NOAA COREv2
data sets

AvgNYF constant forcing obtained from averaging the
COREv2 monthly normal year fields

In choosing our initial ensemble, we had a lot of freedom.
However, the primary possibilites can essentiall be broken
down into two. Our initial ensemble was taken with 20
members and was chosen to be one of the following

NYJan an ensemble of the January 1 POP model
restart files for the years 240 through 259 for a long
POP spin-up run from a Levitus T, S initial condi-
tion with normal year forcing

NYEq!l equally spaced restart files within year 250 of
a spin-up run from Levitus initial conditions with
normal year forcing

The observations which we assimilate is constant in time
for each experiment. The observations themselves are
from tHEP1AceThATiSnOMOTrE and are equally spaced
over the ocean at a resolution of five degrees and at vari-
ous depths. The depths of the observations we assimilate
and the time interval between assimilations is varied be-
tween experiments. The specific choices of observations
and assimilation intervals we used are the following

S5D05DL10 assimilation of all available observations
with depths between 0 and 200 meters every five
days

S5D30DL10 assimilation of all available observations
with depths between 0 and 200 meters every thirty
days

S5D30DL26 assimilation of all available observations
with depths between 0 and 2.0 kilometers every
thirty days

The particular experiments we conducted are listed in

table I

TABLE I: Experimental setup for various data assimiation
experiments with constant observations.

Exp # Init Forcing Observations
CONO1 NYJan AvgNYF S5D10DL01
CONO02 NYJan AvgNYF NONE

CONO03 NYEql AvgNYF S5D05DL01
CONO04 NYEql NYF S5D05DL01
CONO05 NYJan AvgNYF S5D30DL26

B. Initial Ensemble Rank Histogram

The seasonal cycle is the biggest signal. So,
for the constant forcing-data DA runs (alone), it
seems best to use NYEql as the IC. Most likely
my bad. But, this should rectify the initial outlier
nature of the observations in the constant forcing-
data run.

Depending on the choice of initial ensemble, the initial
rank histogram can be severely rank deficient. An expla-
nation of this is that for an initial ensemble like NYJan,
then ensemble represents a best guess to the state of the
system at a specific day of the seasonal cycle. Unfortu-
nately, the observations themselves represent the annual
mean of the system. Thus the difference between the
ensemble mean and the observation mean can be quite
large; comparable to the size of the seasonal cycle itself.
Thus in comparison to the total 28287 available obser-
vations with the SSD10DLO01 observation setup, a mere
544 or 1.9 percent are actually contained by the initial
rank histogram in the CONO1 experiment. A plot of this
histogram is included in Fig. (1) below.

On the other hand, the number of observations con-
tained within the rank histogram has a tendancy to in-
crease as the number of assimilation cycles increases. A
plot of the percentage of observations contained within
the rank histogram as a function of the assimilation time
is included in Fig 3 below

C. Evolution of Ensemble Error and Spread

Riley, Please use these changed definitions for
error and spread diagnostics
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FIG. 1: A time series of rank histograms for the CONO1 ex-
periment. Because the initial ensemble is chosen with as the
best guess to a specific day of the year and the observations
represent the best guess to the annual mean, the ensemble
mean lies well away from most of the observations. As a re-
sult, the initial ensemble is severly rank deficient with respect
to the observations, containing less than 8 percent of the avail-
able observations and leading to an immediate collapse to an
ensemble with less than 2 percent of observations As time
increases, however, the ensemble does begin to recover.
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FIG. 2: A time series of rank histograms for the CONO03 ex-
periment.
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FIG. 3: The time dependence for the percentage of observa-
tions (of the 28287 available observations) contained within
the rank histogram for the CONO1 experiment. Here assimi-
lation occurs once every five days with the same observations.
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FIG. 4: The time dependence for the percentage of observa-
tions (of the 28287 available observations) contained within
the rank histogram for the CONO3 experiment. Here assimi-
lation occurs once every five days with the same observations.

approximated by the standard deviation of the model
estimate of that observation in a control run.
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A plot of these various quantites for temperature and
salinity as a function of the assimilation time is included
in Figure (5) below. As can be seen, the spread increases
with time as the error decreases. Is this an indication
that the assimlation has yet to settle down and is still
making major adjustments to the ensemble state, or be-
cause an annual mean state has more uncertainty associ-
ated with it than a specific day? Most likely, the answer
is the former, and the ensemble will continue to adjust
toward the mean state as time increases. Another inter-
esting observation is that the average salinity seems to
overshoot the average from observations, while the tem-
perature seems to be asymptotically approaching it. Has
this to do with the smaller spread associated with the
salinity, or something else?
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FIG. 5: The error, spread, and mean value behavior for salin-
ity and temperature as a function of the assimilation time
for the CONO1 experiment. The error has a tendancy to de-
crease in time, while the spread increases. All quantities are
calculated and averaged in the observation space.

D. Ensemble Correction and Forecast Runs



